Targeting cancer with a novel BET bromodomain inhibitor

Anu Molilanen1, Mari Björkman1, Reetta Rikonen1, Chandrasekhar Abbineni2, Mahaboobi Jaleeli2, Sivapriya Marappan2, Tarja Ikonen1, Girish Daginakatte2, Aravind A2, Elina Mattila1, Juha Rantalä1, Susanta Samajdar2, Murali Ramachandra2, Pekka Kallio1

1Orion Corporation Opharma, Espoo, Finland, 2Autogene Discovery Technologies Limited, Bangalore, India, 3AquaX Biovation, Finland

Background

Bromodomain and extra-terminal (BET) family proteins are dual bromodomain-containing epigenetic readers that bind to acetylated-lysine residues in histones at gene promoter and enhancer elements and recruit protein complexes to promote transcriptional elongation. Recent evidence demonstrates that BET bromodomain inhibition leads to anti-proliferative activity in pre-clinical models of many hematological malignancies and solid tumors. Selective inhibition of BET bromodomains by small molecule inhibitors has emerged as a promising therapeutic strategy for the treatment of cancer. In this study, we evaluated the antitumor activity of ODM-207, a novel, potent and highly selective BET bromodomain inhibitor.

Methods

Biochemical activity (binding of ODM-207 to BRD2 BD1, BRD3 BD1, BRD4 BD1, BRDT BD1 and BRD4 full length) was measured by increasing the displacement of bromodomain-bound fluorescent peptide from bromodomain containing plasmid DNA. Cell viability and apoptosis assays: Cell lines and patient derived cells from pleural effusions or tumor biopsies were plated on multiwell plates and treated with 8-point semi-log dilution series of ODM-207 in duplicate or triplicate for 3 to 4 days. Growth inhibitory effect of ODM-207 in solid tumor cell lines was measured using WST-1 Cell Proliferation Assay (Roche). Cell viability and apoptosis of hematological cancer cell lines using CellTiter-Glo® assay (Promega). Apoptosis in relation to live cells was measured using ApoTox-Glo assay (Promega). Growth inhibitory effect on patient-derived tumor cell cultures (Misvik Biology) was measured either by proliferation assay (ProQinase), immunofluorescence and cell cycle analysis: In situ cell extraction was performed essentially as described by Zhan et al. 2015

Results

1. Biochemical activity of ODM-207

2. In vitro antiproliferative activity of ODM-207 across multiple tumor types

3. ODM-207 inhibits cell growth and induces apoptosis in a subset of prostate and breast cancer cells

4. OTX015 resistant LNCaP prostate cancer cells maintain sensitivity to ODM-207

5. ODM-207 is efficacious as a single agent in xenograft models

Conclusions

ODM-207 is a novel and structurally distinct inhibitor of BET proteins that

 ✓ Induces cell cycle arrest and shows broad and potent antiproliferative activity against a wide range of different hematological and solid tumors in vitro and in vivo.
 ✓ Inhibits proliferation of patient-derived cancer cells representing various tumor types.
 ✓ Inhibits proliferation and downregulates Myc levels in prostate cancer cells that have acquired resistance to BET-inhibitor OTX015.

A clinical trial with ODM-207 is ongoing in patients with solid tumors (NCT03035597).